Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biol. Res ; 51: 54, 2018. graf
Article in English | LILACS | ID: biblio-1011398

ABSTRACT

BACKGROUND: Hyperpigmentation disorders such as post-inflammatory hyperpigmentation are major concerns not only in light-skinned people but also in Asian populations with darker skin. The anti-tyrosinase and immunomodulatory effects of sericin have been known for decades. However, the therapeutic effects of sericin on hyperpigmentation disorders have not been well documented. METHODS: In this study, we used an in vitro model to study the anti-tyrosinase, tolerogenic, and anti-melanogenic effects of sericin on Staphylococcus aureus peptidoglycan (PEG)-stimulated melanocytes, dendritic cells (DCs), and artificial skin (MelanoDerm™). Enzyme-linked immunosorbent assay, conventional and immunolabeled electron microscopy, and histopathological studies were performed. RESULTS: The results revealed that urea-extracted sericin has strong anti-tyrosinase properties as shown by a reduction of tyrosinase activity in melanin pigments both 48 h and 10 days after allergic induction with PEG. Anti-inflammatory cytokines including interleukin (IL)-4, IL-10, and transforming growth factor-p were upregulated upon sericin treatment (10, 20, and 50 µg/mL), whereas production of allergic chemokines, CCL8 and CCL18, by DCs was diminished 48 h after allergic induction with PEG. Moreover, sericin lowered the expression of micropthalmia-associated transcription factor (MITF), a marker of melanogenesis regulation, in melanocytes and keratinocytes, which contributed to the reduction of melanin size and the magnitude of melanin deposition. However, sericin had no effect on melanin transport between melanocytes and keratinocytes, as demonstrated by a high retention of cytoskeletal components. CONCLUSION: In summary, sericin suppresses melanogenesis by inhibition of tyrosinase activity, reduction of inflammation and allergy, and modulation of MITF function.


Subject(s)
Humans , Keratinocytes/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Hyperpigmentation/drug therapy , Sericins/pharmacology , Melanocytes/drug effects , Transcription Factors/drug effects , Microscopy, Electron , Signal Transduction/drug effects , Keratinocytes/ultrastructure , Cells, Cultured , Microphthalmia-Associated Transcription Factor , Hypersensitivity , Inflammation , Melanocytes/ultrastructure
2.
Braz. j. med. biol. res ; 49(9): e5235, 2016. tab, graf
Article in English | LILACS | ID: lil-788945

ABSTRACT

Improving overall health and quality of life, preventing diseases and increasing life expectancy are key concerns in the field of public health. The search for antioxidants that can inhibit oxidative damage in cells has received a lot of attention. Rosmarinus officinalis L. represents an exceptionally rich source of bioactive compounds with pharmacological properties. In the present study, we explored the effects of the ethanolic extract of R. officinalis (eeRo) on stress resistance and longevity using the non-parasitic nematode Caenorhabditis elegans as a model. We report for the first time that eeRo increased resistance against oxidative and thermal stress and extended C. elegans longevity in an insulin/IGF signaling pathway-dependent manner. These data emphasize the eeRo beneficial effects on C. elegans under stress.


Subject(s)
Animals , Caenorhabditis elegans/drug effects , Longevity/drug effects , Oxidative Stress/drug effects , Rosmarinus/chemistry , Stress, Physiological/drug effects , Caenorhabditis elegans Proteins/drug effects , DNA-Binding Proteins/drug effects , Forkhead Transcription Factors/drug effects , Signal Transduction/drug effects , Transcription Factors/drug effects
3.
Braz. j. med. biol. res ; 46(8): 643-649, ago. 2013. graf
Article in English | LILACS | ID: lil-684525

ABSTRACT

MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1 , p16INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.


Subject(s)
Humans , Apoptosis/drug effects , Benzofurans/administration & dosage , Endophytes/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Xylariales/chemistry , Apoptosis Regulatory Proteins/genetics , Benzofurans/isolation & purification , Cell Cycle Proteins/drug effects , Cell Proliferation/drug effects , /drug effects , /drug effects , DNA-Binding Proteins/drug effects , Flow Cytometry , Forkhead Transcription Factors/drug effects , Cycadopsida , /drug effects , HeLa Cells , Nuclear Proteins/drug effects , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Transcription Factors/drug effects , Tumor Suppressor Proteins/drug effects
4.
Braz. j. med. biol. res ; 41(7): 579-582, July 2008. ilus, graf
Article in English | LILACS | ID: lil-489525

ABSTRACT

Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERá and ERâ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17â-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17â-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17â-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.


Subject(s)
Female , Humans , Breast Neoplasms/metabolism , Estradiol/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Estrogen/metabolism , Transcription Factors/drug effects , Breast Neoplasms/genetics , Cell Line, Tumor/drug effects , Gene Expression Regulation, Neoplastic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription, Genetic/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL